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We consider the steady self-propagation with respect to the fluid at infinity of two
equal symmetrically shaped vortices in a compressible fluid. Each vortex core is
modelled by a region of stagnant constant-pressure fluid bounded by closed
constant-pressure, constant-speed streamlines of unknown shape. The external flow
is assumed to be irrotational inviscid isentropic flow of a perfect gas. The flow is
therefore shock free but may be locally supersonic. The nonlinear free-boundary
problem for the vortex-pair flow is formulated in the hodograph plane of -
compressible-flow theory, and a numerical solution method based on finite differences
is described. Specific results are presented for a range of parameters which control the
flow, namely the Mach number of the pair translational motion and the fluid speed
on each vortex bounding streamline. Perturbation-theory predictions are developed,
valid for vortices of small core radius when the pair Mach number is much less than
unity. These are in good agreement with the hodograph-plane calculations. The
numerical and the perturbation-theory results together confirm the recently
discovered (Barsony-Nagy, Er-El & Yungster 1987) existence of continuous shock-
free transonic compressible flows with embedded vortices. For the vortex-pair
geometry studied, solution branches corresponding to physically acceptable flows
that could be calculated using the present hodograph-plane numerical method were
found to be terminated when either the flow on the streamline of symmetry
separating the vortices tends to become superonic or when limiting lines appear in
the hodograph plane giving a locally multivalued mapping to the physical plane.

1. Introduction and formulation

The importance of compressibility in the cores of concentrated vortices has been
recognized for many years (Mack 1960; Brown 1965 ; Kiichemann 1978, p. 368) and
compressibility effects are present in numerical calculations of vortices in supersonic
flow past an inclined cone (Marconi 1985). Recent experimental studies using pulsed
laser holographic interferometry (Mandella, Moon & Bershader 1986) indicate that
vortices produced in a compressible fluid by shock diffraction at the end of a channel
may have supersonic flow in the core region, and that the core pressure can be less
than 30% of the pressure at the outer edge of the vortex.

There has, however, been little theoretical work specifically on the interaction of
vortices in a compressible fluid, although, of course, such interactions are present,
among many other effects, in the numerical study cited. An exception is the thin
vortex ring, whose self-induced velocity in a compressible fluid was calculated by
Moore (1985). The effect of compressibility on the ring velocity proved to be of the
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order of the square of the Mach number of the circulatory motion in the core. For a
ring of fixed dimensions and circulation the self-induced velocity decreased as the
Mach number increased.

In plane incompressible flow the analogue of a vortex ring is a pair of vortices with
circulations of equal magnitude and opposite sense. If the circulation is I (primed
symbols denote dimensional variables and unprimed symbols denote their dimen-
sionless equivalents), and the cores are small and separated by a distance 2D, the
pair advances steadily at a speed I”/4nD’. Thus the flow is steady in suitably
translating axes.

Our objective is to study this flow in an inviscid compressible fluid, using primarily
numerical methods so that we are not restricted to small core sizes or small
compressibility effects. For these latter cases we employ a perturbation method due
to Barsony-Nagy, Er-El & Yungster (1987).

The flow outside the cores will be taken to be irrotational and isentropie and it
remains to specify the conditions within the cores. For simplicity, we insist that the
fluid within the cores is stagnant, so that the core boundaries are curves on which the
pressure, or equivalently, the fluid speed is constant. We denote this constant value
by gs.

An upper bound on the possible values of ¢, is provided by the requirement that
the core pressure be non-negative. Thus ¢/, < ¢,, where

1\
o= (P25 (1.1
and ¢* denotes the sound speed at the sonic point. If y = 1.4, which we assume
throughout, ¢, = 2.45...c*, so that the flow field can contain extensive regions of
supersonic flow if the assigned value of ¢, is sufficiently large. Thus our numerical
method must be able to deal with transonic flow.

We define 2D’ to be the separation between the centres of vorticity of the cores.
Then the physical quantities determining the flow are I, D', ¢, ¢, and p/,, where
¢, is the sound speed at infinity and p., the fluid density at infinity. Given these
quantities, we must find a flow field with velocity potential ¢’(x’,y’) such that the
core boundaries are both streamlines and constant-pressure lines and

’

¢~ —q,2 asa+y?-> o0, (1.2)
where ¢, is the velocity of advance of the pair.

We are assuming a steady flow to exist in axes Ox’y’ fixed in the vortex pair;
specifically, the vorticity centroids are at (0, D’) and (O, — D’), the core at (0, D’)
having circulation I"and that at (O, —D’) circulation —I".

We shall go on to impose reflectional symmetry of the core boundaries in both
axes. However, we do not assert there are no other solutions, because experience with
free-boundary problems has shown that less symmetric steady solutions can
bifurcate off solutions of obvious symmetry (e.g. Chen & Saffman 1980 for the Stokes
wave case). Perturbation theory suggests that this symmetry is the only possibility
for small cores, but the question of other solutions remains open, because our
numerical method cannot detect the relevant bifurcations.

Dimensional analysis shows that

4nD'y; Dgq, I’
P = [eo] = v
r f( r ’D’c;,)

(1.3)
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so that we have a two-parameter family of solutions to deal with. When I /D’ ¢, =
0, the flow field is incompressible and was determined by Pocklington (1894) by using
Kirchhoff’s free-streamline theory. Although our detailed procedure uses different
non-dimensionalization we have, in essence, been able to start with a known solution
for a chosen value of the first parameter, which is a measure of the size of the vortex,
and then increase the second, which is a Mach number M= I" /D’c,,, from zero.

The fact that the flow speed is known on the internal boundaries suggests that the
problem can be conveniently formulated in the hodograph plane. We consider this in
the following section.

Our assumption that the flow field exterior to the cores is isentropic and
irrotational implies that there are no shock waves. Since the flow field contains
stagnation points, it is likely that a shock-free flow exists only if M, = ¢, /c,, < 1.
We have imposed this condition in our detailed formulation.

2. The hodograph plane
2.1. Non-dimensionalization
We now dimensionalize by writing

¥ =Lz, y=Ly, t=T4%, (2.1)
where ¢’ is the time and, for the density p’(z’,¥),
p=M1L>3p, (2.2)

where unprimed quantities are non-dimensional. An unusual feature of the problem
is that a convenient choice of the length, time and mass scales L’, 77 and M’ is not
at this stage apparent. This is because our work will be done in the hodograph plane,
and D’ and I" are thus not available as basic scales at the outset. We are however
free to choose p, = 1, so we have

L M =1 (2.3)

as one relation between our scales.

2.2. The flow in the hodograph plane

When we impose reflectional symmetry in both axes the flow field and boundary
shapes need be determined only in the }-plane z,y>0. Thus we have the
configuration sketched in figure 1.

We introduce a velocity potential ¢(z,y) and a stream function ¥(z,y) such that
the velocity field (u(z,y), v(z,y)) is given by

_8_ % % W
T oy’ "_ay_ P o (24)
from which it follows that (Milne-Thomson 1966, §15.44)
e ( . d:ﬁ)
dz=—|d¢+i—]), 2.5
—(ap+iF 25)

where 2 = z+iy, and u—iu = g e, so that

L)

oz 2.6
0g q\d¢ poq (26)



174 D. W. Moore and D. I. Pullin

[oo] [}
B

A

y

o x S i oo}

Ficure 1. The physical plane showing some typical streamlines. § is the stagnation point and 4B
the vortex core boundary. The complete flow pattern can be obtained by reflections Ox and Oy.

and
0z e’ (3d idy
@_?(6_0+;a_0) (2.7)
Compatibility of these equations gives
% _ wo(l ) |
3¢ 1265 (pq (2.8)
and o oy
9_1%
36 = pdg’ (2.9)
We also have Bernoulli’s theorem
c? c?
2 =_Us
L +‘_},,_1 o (2.10)
and the isentropic flow relation
c? _
T =0 (2.11)

where c(z, y) is the local sound speed and c, the stagnation sound speed. Elimination
of ¢ from (2.8) and (2.9) and use of (2.10) and (2.11) leads to the equation

q,(l_q’(v—l)) ?j'_k+q(1-M) %+(1_9’(V+ 1)) &Y _o (@219

2c? og? 2c2 Oq 22 J o6

which we shall write, for brevity, £ (y) = 0. This is the governing equation for the
flow in the (g, §) or hodograph plane.

Next we must determine the image in the hodograph plane of the boundary AB
o0 8O (figure 1) of the flow region in physical space. Starting at O where ¢ = ¢,, we
note that on O4, § = 0; on AB, g = q,, which is prescribed, and on B oo, § = &. At
©w,f=nand g=¢q,;0on oS,f=n;at S, g=0and 0 <<= and on 80, 6 =0.
Thus, as sketched in figure 2, the flow domain in the hodograph plane is the rectangle
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q=0 9=9» q=q,
Ky © B
f=x %_0
2 =
=0 =
d 20)=0 v=v
6
— o _
=0 y=0 ao‘o
s q [7) A
d=q

F16UrE 2. The hodograph-plane formulation. & is the differential operator defined in (2.12).
The point oo is at (g, ™) while O is at (g,,0) where g, is unknown.

0 < ¢ <¢,,0< 6 <n Wenote that the mapping between the physical plane and the
hodograph plane must be singular on the boundary of the flow domain, because the
hodograph image of the point § is the interval ¢ = 0, 0 < 6 < n. We shall deal with
the effect of this singularity in due course.

It remains to find the boundary values of { in the hodograph plane. We choose
¥ = 0 on the axis of symmetry o0 SO and y = i, on the vortex boundary 4B. The
boundary condition on OA4 or B w is derived by noting that on these lines dx/d¢ =
0, while § = 0 on O4 and 6 = n on B_. Thus (2.6) gives 0¢/0q = 0 so that (2.8) gives
oy /o6 = 0.

We are thus led to the formulation of the problem in the hodograph plane sketched
in figure 2. The crucial point is that, unlike the case of flow past obstacle of prescribed
shape, the physical boundary conditions yield a complete specification of the
hodograph-plane problem. Thus the principal difficulty traditionally associated with
the hodograph method disappears. It is this, rather than the linearity of £, which
makes the hodograph-plane method viable. We have, however, to pay a price for this
reduction of the original free-boundary-value problem, because we are restricted to
streamlines on which 8 lies between O and wn. Thus, in particular, the vortex-core
boundary cannot develop a waist at 4B, because this would involve values of § less
than zero and greater than x. It will later be shown that this restricts solutions that
can be obtained with the present method to those for which the local Mach number
M, = g,/c, at O satisfies M, < 1.

We now examine the hodograph-plane formulation in more detail. First we note
that the parameters g, and ¥, are unknown. Secondly we observe the change in type
of the boundary condition on y at the points (g,, 0) and (g, ®). This switch will cause
¥ to have singularities at these points and we must determine the form and strength
of these singularities by examination of the flow in the physical plane. We note that
for solutions with a hodograph of this form ¢, < g,.

2.3. The singularities at co and at 0

We choose to examine the nature of the singularities first. As remarked in §1, we
assume that the flow at oo is subsonic, since a shock-free flow field seems unlikely
otherwise. Then the flow at large distances from the pair is a uniform stream (—gq,
0) plus a small perturbation, whose form can be found from the subsonic version of
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linearized-flow theory. Introducing the appropriate Mach number M, = q,/c,,, we
find that the velocity potential is

Azx

¢ = _qwx—m’ (2.13)

where the second term is a dipole of strength A, distorted by the Prandtl-Glauert
transformation, with unknown strength and with orientation determined by the
reflectional symmetry. To leading order (recalling that p, = 1), the stream function
is given by

V=49 (2.14)

while the velocity field is given by

_ A(L—M2)y*—2?)
4T Tl T e (- M) Y (2:19)

and
o 2Azy(1—MY)
T @+ (1-ML) R

(2.16)

note that (2.16) shows A > 0 since v > 0 from figure 1. If we eliminate x and y from
(2.14), (2.15) and (2.16) we find that, to leading order,

¥ ~ A s cosls, (2.17)
2

where local quasi-polar coordinates in the hodograph plane are defined by

sett =00y 00 (2.18)
9% (1 _l‘lﬁo)§
the constant 4 is given by
A= —g B(1—M2)7 (2.19)

This singular behaviour is worse than might have been anticipated. For the
Laplace operator (to which % reduces near (q,,, 0) after a Prandtl-Glauert stretching)
conformal mapping shows that the natural singularity at a change of type is

Y ~ B st cosls. (2.20)

Thus the principle of ‘minimum singularity’ fails here and we must find a way to
impose the behaviour (2.17). We can show (Appendix A) that

Y~ ¥+ Bsteos+0(sh)  as (g,60)> (4w ), (2.21)
where
¥, = A(s7% cos 30+ s¥(B, cos 38+ B, cos}9)), (2.22)
where B, and B, are known and B is unknown. We now write
¥ =y+y, (2.23)
and solve .
g('/’) = —$(¢s), (224)

subject to modified boundary conditions and the requirement that ¥ has singular
behaviour of type (2.20) at (¢.,, ©) and — as is shown by local analysis in the physical
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plane — at (g,,0) also, provided that M, < 1. Our method of implementing this
requirement will be described in §4.

Clearly 4 is a fundamental constant of the problem and we complete our
specification of scales by imposing 4 = —1 and ¢, = 1. Thus

g T L1 =1 AL = —1, (2.25)

so that (2.3) and (2.25) fix L', 7" and M’ in terms of the physical quantities p/ , ¢,
and A’. In conformity with our convention 4" and A" are the dimensional quantities
whose dimensionless forms are 4 and A. The characterisation of the pair by the
quantities ¢, and A’ rather than D’ and I is unusual, but is forced on us by our

method of solution. For a vortex pair with very small cores in an incompressible
fluid

, I

Qo = 41tD, (2‘26)
and

rv=L f , (2.27)

so that I and D’ are easily determined from ¢/ and A’ in this case. Also, for this case
90 = 39

We must at this point refer to a potentially serious difficulty, which is that we do
not know if the solution of the above boundary-value problem is unique. Since the
boundary-value problem is linear, this is equivalent to asking if the homogeneous
problem obtained by setting A = i, = 0 has a non-zero solution. The difficulty is in
the transonic case where the eigensolutions correspond to stationary sound waves
trapped in the recirculating region near the vortex. Indeed, sound waves of
infinitesimal amplitude can be trapped in the potential vortex, recirculating flow
around the exterior of a rigid circular cylinder if the Mach number based on the
cylinder diameter takes certain critical values (Taylor 1930).

If eigensolutions exist at critical values of M, our non-homogeneous problem
would have no solution at these critical values. Near such an eigenvalue our problem
would be ill-posed and the solution would vary rapidly with M. We shall consider
this question again in §5 when we examine our results.

2.4, The unknowns q, and yr,

We now return to what is the sole remaining problem in determining ¥ (g, #), namely
that ¢, and i, are not known and must be determined as part of the solution.

First, we note that because of the singularity in the mapping at §, imposition of
the boundary condition i = 0 on ¢ = 0 is insufficient to ensure the correct behaviour
of Y as ¢ > 0. Near the stagnation point the effect of compressibility can be neglected
and

U~ exy, (2.28)
so that Pot ~ €x (2.29)
and Po? ~ —ey, (2.30)

where p, is the stagnation density and e is a constant. Hence, as ¢—>0 we must

have
2

¥~ —gﬁ(f sin 26. (2.31)
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Now the full equation has, for ¢ < 1, the exact solution
¥(g,0) =X G,(q)sinnfd (0<6<n), (2.32)
1

where G, (q) ~ g,9" as ¢— 0. Comparison with (2.31) shows that the n = 1 term must
be absent from the expansion (2.32), which is satisfied if

Li(go. ¥viq) = fw(ql, 6)sinfdé =0 (2.33)
0

for any ¢, such that 0 < ¢, < 1.

Secondly, we remark that the image in the physical plane of the line segment
q = ¢, 0 < 6 < nt, must begin and end at = 0 (i.e. x, = z in figure 1) for every ¢,
such that g, < ¢, < ¢,. Use of (2.5) and (2.9) gives

" oy sinf oy
@S@ qa»

df =0 (2.34)

q=ag

1
Iy(90, ¥v3 9) = ;f

0

and it is easy to show from the separated solution that this holds for all ¢, in the
interval if it holds for one.

3. Constructing the physical plane

The numerical procedure to be described in §4 yields the unknown parameters g,
and ¥, and the stream function ¥(q,6). In this brief section we consider the
construction of the physical plane sketched in figure 1.
Suppose ! is a curve in the (g, 0)-plane defined by the equations

d

ﬁ=mwmm, 3.1)
dé .

a = on [6(q,0)]. 3.2)

where 4 is the arclength on the curve and € is the angle between the local tangent
to I in the direction of increasing x and the g-axis. The curve I might be ¢ = constant,
in which case ® = +1ir, or = constant, with @ =0, —=m, or ! might be a streamline
when

_ Ve
. =y
sin [G(q, 0)] = m. (3.4)

Then the complex representation z(u#) of the image of ! in the physical plane
satisfies
dz 0zdgq  0zdf

G- T (3.5)
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which leads to

dz _of( D (1), i0p 1 ) one]
@_7[(q60aq(pq)+p aq) se+(p 2) "} 9

in view of (2.6)—(2.0). Equations (3.1), (3.2) and (3.6) constitute a real fourth-order
autonomous system to determine z(u), y(x), ¢(#) and 6(x), given z(0), (0), ¢(0) and
0(0) say.

The physical plane image of I given by (x(x), y(z)) will —in general — exhibit
cuspidal behaviour if dz/du has a simple zero. This will happen if

a¢ q oy
9355 ) 6+p % sin® =0 (3.7)
1a¢ 10y
and o3 o8 6 + —-—aa sin® = 0. (3.8)

Now cos © and sin ® cannot simultaneously vanish. Thus a necessary condition for
cuspidal behaviour is

2 (pq) 1%
%36 3 0
1 P, (3.9)
13y 13y
pdg’ p o6
i - _4|(¥ ~7)| - 3.10
leading to 4= pe (aq) +— (60) ( o )]—0, (3.10)
where ¢ is the local sound speed.
From a standard result,
0z, 9)
4=q¢ =, 3.11
3. 6) @10

so that (Landau & Lifschitz 1959, p. 432) a necessary condition for the success of the
hodograph method is that

o(z,9)
3. 6) <0.

We monitored the values of 4 obtained numerically and rejected any solutions in
which regions of positive 4 developed. Another result which tests the consistency of
the results is Nikolskii & Taganov’s theorem (Landau & Lifschitz 1959) which states
that the velocity vector rotates monotonically on the sonic line.

(3.12)

4. Numerical method
4.1. Numerical method

A direct finite-difference numerical solution of (2.24) on a uniform grid in the (g, 6)-
plane proved impractical for several reasons. First, large values of ¢, for some cases
would then require unrealistically large numbers of grid points to achieve resolution.
Secondly, we decided that in order to reduce errors it was desirable to fix the singular
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point ¢, = 1, and the (variable) singular point ¢ = g, at or near a cell centre. Hence
prior to differencing we utilized a simple univariate stretching in the 6-direction, and
an adaptive local stretching in the g-direction of the form

0=0(y), 00)=0, f(r)=rm, (4.1)
g=4q(€), q0)=0, g¢(1)=gq,. (4.2)
Under the stretchings (4.14.2), (2.24) becomes

202 1Y o0 1, 6@ Hatn a;: _PWEM],  43)

0§? o¢ oyt
where
¢ly—1](dg
m o[- L (&) |
Cy—1)]d% ¢*y—3)|d¢
P = o[- EG o 1L s
_[{_for+1)] (Y’
ao,n = | 1-L2E0 ()"
¢ly+1)]d*y
G(g)H2( [1 202 ] d02’ J
subject to the boundary conditions, obtained from figure 2 and (2.23),
S—w: ¥ =0, W
w—B: A,,=O,
B-A4: ¢=¢v_¢s(11ﬂ)
A4-0: §,= W (4.5)
Ny
—8: ¥ =—¥,£0),
—8: 'p = _')05(0’77)’ /
and ¢, = ¥ [q(£), 0(p)] is given by (2.22).

When ¢, < qev we have a two-parameter (q,, M) problem which we shall refer to
as the compressible Poklington (1894) vortex (CPV). When ¢, = ¢,, we reach a
singular limit of the CPV where the vortex pressure is zero. Here ¢,, = ¢.,(M ) (see
(5.4)) and we have a one-parameter (M ) problem which we shall refer to as the
evacuated vortex (EV). In either case, for fixed parameters, the method of numerical
solution adopted presently divides into two parts: an inner algorithm where the
linear problem (4.1)—(4.5) is solved numerically for fixed ¢,, ¥,, and an outer
algorithm where ¢, and ¥, are determined by Newton iteration on the (2x2)
nonlinear problem given by (2.33)—(2.34). We first describe the inner algorithm.
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4.2. The tnner problem: the finite difference method
The mixed elliptic (0 < ¢ < c*)-hyperbolic (c* < ¢ < ¢,) equation (4.3) was solved
numerically using second-order central differences on a fixed grid
£ =J4AE j= 0...J,}
n,=tAy, ©1=0..1,

where Af =1/J, Ay =n/I, and we put a/;,, = g/}(g,, 7). Specific forms of (4.1)—(4.2)
were chosen as ’

(4.6)

0(n) = n—e¢,8in (29), 4.7)

—eFE
q¢) = —% log [1—§(1—e %)]+¢, sin [%—)].
q

(4.8)
Equation (4.7) concentrates cells near § = 0,® when ¢, > 0. If ¢, = 0, (4.8) reduces
the cell density near ¢ = g, when a, > 0. If ¢, is small, the amount of stretching is
nearly the same but the formula can be tuned to ensure that £(q.) and £(g,) lie at
cell centres.

In practice, values of a,, ¢, and # were calculated as follows: first an estimate of
, based on the desired amount of stretching was specified in the outer algorithm.
qut €, was set equal to zero and £, and £, computed from the requirements that
q(&,) = g, and q(£,) = 1. The points £, and £, will not be at cell centres, but we can
define £, and £, to be the coordinates of the closest cell centres, so for some integers

jo a’nd jco’ .
Next the parameter # was determined from
1—exp (—p) ’

which ensures that the second term in (4.8) has different signs at £ = £, and £ = £,;
we found this restriction desirable. Once calculated, §., §, and g remain fixed
throughout the computation of the outer problem. For each solution of the inner
problem, «, and ¢, were then found by requiring

A€ 20 €0) = 1, q(Eo3 24, €5) = o (4.11)

This adaptive g-stretching ensured that ¢, = 1 and ¢ = ¢, always remained neart cell
centres while maintaining overall local stretching corresponding approximately to
the prechosen «,. Variations of a, were O(A{) and ¢, was always O(Af).

The discrete solution domain @ consists of all grld points (j,¢) at which lﬁ‘ﬂ is
unknown, Thus, because of the switch in boundary conditions, & increases in height
as j increases through the switch values j,, and j,; the upper step at j, is shown in
detail in figure 3. We obtain linear equations for the unknowns ¥, by insisting that
the finite-difference form of (4.3) holds at each point of 2. We must next explain how
we deal with the boundary points of D where the stencil protrudes from 2.

Implementation of the Dirichlet boundary conditions in (4.5) was straightforward.
For the Neumann boundary conditions, ghost points outside & were defined at

7, = —Ay, g =JA¢E, j=jo...J—1,} .12)
M= U+ Ay, §=5A8 j=j,..J—1

t Near, not exactly, because we solved (4.11) approximately.
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[gmn] 5(1]=75)
ML © JUaD  |UatlLD

Uo—1,1-1 Ueor =1 [ +1,1-1)

FieurE 3. Finite-difference grid near singularity at ®@ = [£_, 7] in the [£, #]-plane. @, grid
point; X, ghost point.

The tﬁ,, of these points are easily expressed in terms of their mirror-image values from
the symmetry properties of . Second-order difference forms of (4.3), and also of the
derivative boundary conditions in (5.4) were then applied at

7,=0, £ =7A¢, j=jo...J—1,}
m=n E=jAL j=jg..J—L

The residual unforced st singular behaviour (see (2.20) and Appendix A) for lﬁ‘ near
(g,8) = (1,n) and for ¥ near (g,0) = (g,, ®) was injected onto the difference grid in
the simplest possible way. Assuming that (2.20) is valid locally within the cell con-
taining (£,7%) = (§,, ) on its boundary in figure 3, a linear relationship between
;&, 1 and ;&l .1-1 containing known coefficients is easily found. This was then used to
eliminate ;&, .1 when the difference stencil was applied at (j, i) = (j,+1,1) and at
(4, %) = (o, I —1). A similar scheme was used to eliminate ¢, o near (g,6) = (g,,0). We
note that the injection of unforced singular terms i.e. those containing unknown
constants as in A 11) to O(si) only may lead to errors in i near the smgularltles of
O(h3), h = AE or Ay. Some 1mprovement may be expected by use of a local expansion
to higher order than that given in Appendix A. However, the coupling of higher-
order terms into the difference grid in a rational way substantially increases the
bandwidth of the resulting linear equation system.

For known (g, ¥,), the boundary-value problem now reduces to (J—1) (I+1)—
(Jo+Jo) linear equations for an equal number of unknowns. The use of central
differences in the hyperbolic as well as in the elliptic subdomain will generally
preclude the successful iterative solution of the linear equation system. Although the
use of upwind differences in the hyperbolic subdomain may allow iterative solution,
this was rejected in favour of uniform central differences and a direct method because
of our desire to eliminate uncertainties from the novel hodograph-plane problem.
Numbermg the 1,0“ i-wise then gave a bandwidth of 2I + 3. The linear system was
solved in 14-figure arithmetic using a vectorized banded solver kindly supplied by
Dr B. Fornberg.

(4.13)

4.3. The outer problem

Once the ¥, are known the integrals in (2.33) and (2.34) may be evaluated. This was
done using central differences for the derivatives, and the periodic trapezoidal rule
for the integrals, after using symmetry to extend the integration range to (0,2r).
Equation (2.34) was evaluated on ¢ = 2. For the CPV, (2.35) was evaluated on
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j=J—2 while for the EV a special form of (2.35) was used (see (4.20)). The outer
problem may then be written as

1,(q0, ¥vit1) =0, I,(go,¥y3q) = 0; (4.144a,b)

that is, two equations for two unknowns ¢, and ¥,.

This was solved by Newton iteration, evaluating the Jacobian by central
differences thus requiring 5 solutions of the inner problem per outer iteration.
Convergence of the outer problem was accepted subject to

[I,] <1070 k=1,2

and 4 < 0 (equation (3.10)) in the solution domain.

Starting values of g, and ¥, for the CPV cases were obtained from the Pocklington
theory valid for M_, = 0. Then as M was increased in steps at fixed g,, previous
converged values of g, and ¥, were used to extrapolate as M ,, was increased in steps
at fixed ¢, ; previous converged values of g, and ¥, were used to extrapolate starting
values. For the EV case we obtained analytic estimates for ¢, (equation (6.10))
and ¥, (equation (B 10)) valid in the limit of core radius R’ € D’, equivalent to
M < 1; these values were used to start the Newton iteration at the smallest value
of M, considered.

4.4. Special procedure for the EV

For the EV computations, some special treatment of the inner problem was required
owing to the singular behaviour of ¥(q,0), ¢—>¢e,. For ¢ > ¢,,9, = ¢ey, it may be
shown that the solution of (2.12) which satisfies the boundary conditions of figure 2
and which has the required behaviour when ¢—g¢., can be written as a separated
solution of the form

v =y,+ 3 D, cos(nf)ri"(1—7)f"1F(c—b, c—a, c—a—b+1, 1—7), (4.15)

n=0

c=n+1,

a\_tf 1 y+1\ , 1 ]i’
(b) 2{"' y—l*[(v—l)"’*(y—n* } (4.16)

2
-
qev
where F is the hypergeometric function, and D, n = 0..., are unknown coefficients.
Together with the density equation for g, = ¢,

p =y —1) M%(ad, — "), (4.17)

(4.15) may be used to show that (2.34) is satisfied automatically when D, = 0.
Expanding the hypergeometric functions in (4.15) in powers of 1—7 shows that
¥V =¥+ (@, — 0P [E,(6) + By (6) (g,— )+ Ey(6) (g,—9)*+O(g,— )], (4.18)

where the E,(6), s = (1, 2, 3) are unknown functions of & only. Hence when y = 1.4,
 is weakly singular as (g, —¢)*® when ¢ — g,. The use of second-order differences in
£(q) near £ =1 (g = ¢,,) assumes however that ¥ is locally well represented by a
second-order polynomial, and this was found to give irregular behaviour for y near
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the vortex boundary. A more appropriate difference approximation was thus
obtained by assuming a local three-term solution of form (4.18) centred on g = ¢,
J—Je £j<J—1, and a local two-term solution (neglecting E;) near g,_, (¢; = gey)-
The g-derivatives in (2.12) were then evaluated in terms of the unknowns E,(6,),
1=0.:. at each j. These latter quantities may easily be expressed as linear
combinations of ¥,_, ,, ¥, ;, ¥4, ¢ using (4.18) and (2.23). Using centred differences
for 4 in (2.12) then gives a special stencil for use at gridpoints j =J—J,..J—1,
1 = 0...1, which preserves the singular behaviour of i near the vortex. For the outer
problem (2.34) (also (4.14b)) reduces to

Ito i) = [ Ei0) cos06. (4.19)
0

Once E,(0) is known, computation of the vortex boundary shape in the physical

plane is straightforward. Here we used J,, = 4 or 8 depending on the values of ¢, and

the grid size (J x I).

5. Results
5.1. Range of parameters

For the most part the CPV computations discussed here were calculated on each of
two finite-difference grids with (J x I) = (76 x 20) and (150 x 40) respectively. Owing
to the very large values of ¢.,(= 0(10?)) for the EV, grids of size (J x I) = (300 x 40)
and (600 x 30) were used. The only input required was M ., ¢, and a, together with esti-
mates of the target a,. Where overall stretching was not required, (a,, 2,) = (O(k), 0)
were used. With ¢, = 2.5 and 3.0, the smallest values used here (a,,a,) = (—3,0.3)
and (a,, ag) & (—1,0.2), respectively, were chosen since here g, - g, so that the region
between the x-axis of symmetry and the vortex bottom boundary near 4 in figure
1 becomes nearly singular in the (g,6)-plane (e.g. note the regions of large
O-derivative in figure 6). When ¢, > 10 for the CPV and for all EV computations,
35a,<8.

Ger:erally results are presented with the scale specification ¢, =1, 4 = —1 (see
(2.25)) but constructions of the physical plane will usually have ¢, =1, I' = 2m.
Transformation between these scales simply requires length rescaling by I'/2r. All
calculations presented have y = 1.4.

5.2. Test of the numerical method

When M, =0, the CPV computations recover the single-parameter (g,) family of
golutions corresponding to the hollow-core vortex pair in an incompressible fluid
studied by Pocklington (1894). As a check on the present method a comparison
between the important physical parameters of these solutions and those obtained
from the present method when M = 0 is given in table 1. The numerical evaluation
of the incompressible Pocklington solutions are accurate to better than O(107%).
There is substantial three-figure agreement between these solutions and the present
hodograph-plane solutions, with (J xJ) = (150 x 40), for most quantities, which is
consistent with expectation of errors O(k)? from use of second differences for both
the field equation and the boundary conditions. An exception is the prediction of
¢o- This quantity, which is about equal to 3 (g, = 3 exactly for the incompressible
point-vortex pair), always exhibits errors which increase with increasing g, to O(1 %)
for ¢, =10 and ¢, =20. When ¢, > 1, fewer grid points in the g¢-direction are
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IxI q. a % v, Area Ya Ys r

76 x 20 2.5 —2.994 2420 0.4808 0.4942 0.1962 0.7675 6.693
150 x 40 2.5 —2998 2424 0.4846 0.4990 0.1976 0.7715 6.735

Pocklington 2.5 — 2.4269 048773 050264 0.19882 0.77478 6.7619
76 x 20 3 —0.997 2.697 0.6405 0.3457 0.2288 0.7626 6.472
150 x 40 3 —0.994 2.687 0.6404 0.3505 0.2289 0.7599 6.532
Pocklington 3 — 2.6910 0.64045 0.34906 0.22889 0.75864 6.512
76 x 20 5 0.083 2.985 1.119 0.1260 0.3147 0.6845 6.310
150 x 40 5 0.066 2.973 1.118 0.1258 0.3147 0.6838 6.315
Pocklington 5 — 2.9592 1.1173 0.12592 0.31485 0.68355 6.3140
76 x 20 10 —0.086 3.073 1.804 0.0313 0.4007 0.5968 6.262
150 x 40 10 0.073 3.035 1.802 0.0313 0.4011 0.5969 6.274
Pocklington 10 — 2.9976 1.8032 0.03144 040194 059802 6.2851
150 x 40 20 2.807 3.040 2.494 0.00758 0.4494 0.5483 6.242
Pocklington 20 — 3.0000 2.4961 0.007.93 0.45022 0.54968 6.2833

TasLE 1. Comparison of numerical solution for the incompressible Pocklington vortex with present
hodograph-plane numerical solutions, M, = 0. Values of J xI shown. ¢, =1, 4 =1.

concentrated near ¢, =1 and ¢ =g, Use of a = 2.9 for ¢, = 20 stretches the g-
variable in this region but also introduces derivatives of large magnitude into error
terms neglected in second-order differencing. Also it may be expected that predictions
of ¢, will be sensitive to possible errors of O(k)}) in ¢ near (g, 6) = (g, 0) owing to our
crude treatment of the O(sl) singularity described in §4. The presence of this
singularity and of the equivalent one for y near (¢,6) = (1, ) renders a formal error
analysis difficult and none has been attempted.

5.3. The CPV results

The parameter space for the CPV calculations are summarized in figure 4 and in
tables 2-6. In the tables a is one half of the maximum z-dimension of each vortex and
b = 0.5(yz—y,) (figure 1). Hence b/a is a measure of the ellipticity of the vortex core.
Specific examples of streamlines in the (¢,8)- and (z, y)-planes are shown in figures
6-11.

Figure 5 shows an example of the finite-difference grid mapped into the physical
plane. This was obtained by integrating (3.1), (3.2) and (3.6) along lines ¢(£) =
constant in the (£, 7)-plane using a fourth-order Runge-Kutta method with step size
Ap = A7 near (g, 0) = (¢,, 0) and Ax = Ay elsewhere. The required initial conditions
z(0), (0) in the physical plane were first found by integration along # = 0 from the
(z,y)-origin 0. An analytical integration based on the local form of ¥ given by (2.20)
near O was used for the first step. Near ¢ = 0 in the (g, 8)-plane a four-term expansion
of the type (2.32) was used in which the @, were determined from the numerical
solution for ¥ by integration on J = 4. Note in figure 5 the very large deformation
of the finite-difference cell containing O produced by the square-root singularity in
the (g, 6) > (z,y) mapping.

CPV computations were performed by incrementing M  from zero while ¢, is held
constant. At sufficiently large M, the local Mach number on the vortex boundary
M, = q,/c,, given by
Mgy

5.1
[+ 17— ) ML(1—g)’ 6D

M=
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Fieure 4. Summary of parameter space and limitations imposed by solution characteristics.
@, computed point; , evacuated vortex (equation (5.2); ————, M, = 1.0 (equation (5.1)), ...... ,
M, ~0.96; ® , 4 > 0 encountered in (g, §)-plane.
JxI M, o M, M, [/ D Area a/b r
150 x40 0 2.424 0 0 0.485 0462 0.499 1.87 6.74
76 x 20} 0.10 2.425 0.244 0.2513 0.470 0.455 0.487 1.91 6.67
150x40f ™ 2.430 0.244 ’ 0.473 0.457 0.492 1.90 6.71
76 x 20} 0.20 2.440 0.498 0.5108 0.436 0439 0464 201 6.59
150x40) ™ 2.448 0.500 ’ 0.439 0442 0468 2.00 6.63
76 % 20 2.46 0.773 0.383 0413 0.4246 2.22 6.46
soxao) 0 e omer 02 {038 04 Oies s i
76 x 20} 2.46 0.922 0.350 0395 0.395 2.39 6.37
150x40) 03 1248 oo} 09 {055 030 o8 a3 60
76 x 20} 0.36 247 0.952 0.9683 0.343 0.391 0389 244 6.35
150x40) ™ 248 0.959 ’ -10.347 0393 0.391 2.43 6.38

TaBLE 2. Calculated properties for the compressible Pocklington vortex (CPV) pair. ¢, = 2.5. Values
of M as shown. g, =1, 4=-1.

goes sonic. The curve M =1 is shown in figure 4. On increasing M, further, a
limiting value is reached where p, and p, both vanish. This corresponds to the EV
where ¢, = ¢,,. This limiting M _, the maximum possible value corresponding to the
fixed q,, is given by

1
3 = Hr—1 g —1) (5.2)

and this curve is also shown on figure 4.
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IxI M, g M, M, vy, D Area  a/b r
15040 0 2.69 0 0 0640 0482 0351 156 653

76 % 20 2.72 0.273 0614 0472 0340 159  6.44
150 x 40} 010 57y 0.273f 03024 {0.617 0475 0342 158 647
76 x 20 2778 0571 0560 0457 0324 169  6.36
150 x 40} 020 Y9779  os571f 06202 {0.563 0459 0325 168  6.38
76 x 20 2.89 0.926 0476 0431 0294 194 623
150 40} 030 {591 0933f 09728 {0.480 0433 0294 192 624
76 x 20} 03 (288 0964) . (0467 0428 0289 197 621
150 x40f & 2.92 0.980 : 0470 0430 0290 196  6.22
TABLE 3. As table 2, ¢, = 3.0.
JxI M, g M, M, vy, D Area  a/b r
15040 0 2.97 o 0 1119 0498 01258 1.182 6.315

76 20} o1 3.03 0.306\ 5105 {1.059 0494 0.1241 1.199  6.270
150x 40§ - 3.02 0.305 : 1058 0493 01239 1.198 6275

76 x 20} ots (311 0.476) 7941 {0.987 04890 0.1215 1.237 6.220
150x 40§ - 3.10 0.474 : 0986 0488 0.1213 1237 6.224

76 x 20} o020 326 0679) ., {0.893 0482 0.1173 1312 6.146
150 x40f 3.25 0.676 ' 0892 0481 0.1171 1313  6.150

76 x 20 3.32 0.730 0872 0480 0.1162 1.335 6.129
150 x 40} 0.210 {3.30 or2ef 1183 Jl0.871 0480 0.1160 1.336  6.132

76 % 20} 0290 (341 0791) .. (0850 0479 01150 1363 6.111
150 x 40§ - 3.43 0.708 : 0849 0478 0.1147 1364 6.113

TABLE 4. As table 2, ¢, = 5.0.

IxI M, g M, M, D Area  a/b r
150 x40 0 3.03 0 0 1803 04989 003134 1.041 6.274

76 x 20 3.09 0.155 1743 0.4980 003122 1.047 6.253

0.05 0.5129
150 x 40§ 3.05 0.153 : 1740 04979 003121 1.047 6.262
76 % 20} oq0 {314 0.316) {1.572 04952 0.03082 1.071  6.22
150 x40 3.10 0.313 : 1569 04952 003084 1.071 623
76 x 20} o1 (325 0.498) 5014 {1.330 04910 0.02088 1.147 6.15
150x 40§ & 3.21 0.492 : 1328 04908 002094 1.155 6.16
76 x 20 3.27 0.542 1257  0.4899 002900 1.221 6.14
150 x 40} 0.1625 {3.25 0.540f 2352 {1.263 04891 002935 1.227 6.15
TABLE 5. As table 2, ¢, = 10.

JxI M, % M, M, v, D Area alb r
15040 0 3.04 0 0 2.49 0499 00075 1010 6.24
150x40 005  3.06 0153  1.118 226 0.498 00078 1.017 6.25
150x40 008  3.07 0247 2287 1966 0494 00072 1040 594

TaBLE 6. As table 2, ¢, = 20.

FLM 185
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1.2 =

0 0.2 04 0.6 0.8 1.0 1.2 14
x

F1curk 5. Finite-difference grid in the physical plane, ¢, = 5, M, =0.20; ¢, =1, I" = 2n. Lines
of g(£) = const and 6(y) = const shown. (J xI) = (150 x 40).

We now discuss the characteristics of the CPV numerical solutions for 2.5 < ¢, < 20,
the approach for M increasing (at constant q,) of physically acceptable CPV
solutions towards the EV limit was found to be terminated by the appearance of
effects which are summarized in figure 4. It has already been noted that the present
hodograph formulation is restricted to solutions for which the flow at O is locally
subsonic, i.e. M, < 1.0. This is because we have a locally subsonic solution of the type
(2.20) near O built into the finite-difference structure. It might be thought possible to
replace (2.20) by a locally transonic approximation valid near (q,8) = (g,,0) when
M, > 1. This is not so, since under the assumed (z,y)-symmetry properties of the
solution in the physical plane, it is easy to show, assuming the one-dimensional
theory holds approximately, that the limiting streamtube bounded by y = 0 must
then have an area maximum at x = 0, and this would require § < 0 near O, which is
not consistent with the hodograph restriction 0 < 6 < n. With ¢, = 2.5, 3 and 4
respectively we found that our solutions were indeed terminated when M, —~ 1. When
g, = 2.5 we found we could not proceed past M, = 0.96 at M = 0.360 (table 2);
when g, = 3 we were stopped at M, = 0.98 where M = 0.310 (table 3); while when
g, = 4 we were stopped at M, ~ 0.98 at M = 0.260 (not tabulated). As M,— 1, the
streamlines in the (z, y)-plane between the vortex-boundary bottom at 4 in figure 1
and O becomes flattened, and the flow approaches a uniform nearly sonic channel
flow as illustrated in figure 7(b). In the (g, 6)-plane, g, then approaches g, (see tables
2 and 3) and ¥ becomes nearly singular on 8 = 0, ¢, < ¢ < ¢q,. This may be seen in
figure 6(M, = 0.93) where the streamlines converge on the grid scale near (g, ) = (g,,
0). There is also some non-smoothness of the streamlines in figure 6 near § = 0. This
is possibly the effect of the O(s?) singularity at (g,) = (g,,0).This local irregularity
always occurred in varying degrees near O and was generally confined to this region.
The streamlines in the (z,y)-plane for the case of figure 6 (b) shown in figure 7 (b) are
apparently insensitive to the small hodograph-plane irregularity near A0 and thus
remain smooth to the eye.

We stress that the termination of ¢, = constant solutions when M, 1 is due to
restrictions on the hodograph-plane formulation. There may perhaps exist nearby
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FicuRrE 6. Contours of stream function ¥ in the (¢, 8)-plane, —8y, < ¥ < ¥, ¢, = 2.5,
M =0.35. ¢ = 0 is the stagnation streamline. Equal increments in 3.
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Ficure 7. Streamlines in the (z, y)-plane. (a) ¢, = 2.5, M, = 0; (b) ¢, = 2.5, M, = 0.35,
M,=0937, M, = 0.9284. Equal increments in .q, =1, I'=2=n.

solutions with M, > 1, where the vortex boundary develops a waist at 4, but if so,
these are unobtainable by the present method.

When g, exceeds about 3, the results summarized in figure 4 and in tables 2-6
indicate the existence, for M, above the M, =1 curve, of families of continuous
solutions corresponding to isentropic shock-free transonic flow. The vortex core is
then surrounded by an annulus of supersonic flow outside which the flow is subsonic.
Examples of streamlines in the hodograph and physical planes for transonic solutions
are shown in figures 8(c), 9(b), 10(c) and 11 (b) respectively. Figures 8(c) and 10(c)

7-2
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6 (degrees) |
30 -

Fiaure 8. Contours of stream function ¢ in the (g, §)-plane, —1.2¢ < ¥ <y, q, = 5.
(@) M_ =0, (b) M, =0.20, (c) M, =0.22; ————, sonic line g = c*.

show that a fluid particle which enters the flow domain of figure 1 near 4 can first
undergo a deceleration to a subsonic state, and is thereafter accelerated towards the
vortex top near B, to a state which may or may not be supersonic. The sonic lines
of figures 9(b) and 11(b) obey Nikolskii & Taganov’s theorem (Landau & Lifshitz
1959) requiring a monotonically turning velocity vector, as we move along the sonic
line. In figure 9 (b) the sonic line appears on the scale drawn to intersect the vertical
axis below the vortex at an angle of less than 90°, possibly because of insufficient
resolution in the calculation near 8 = 0, ¢, < ¢ < ¢,. To support this interpretation,
we recall that, in view of (3.1), (3.2) and (3.6), the equation of the sonic line is

dz _ e*
36~ p( (;&,, %), (5.3)
so that, for small &, d 1
%Y _
dé ep(c) @7 G4

Now it can be seen from figure 8(c) that i, changes very rapidly from its value 0 on
6 = 0 (giving dy/d@ = O on 8 = 0) to its finite interior values. We have failed to resolve
the effect of this transition so that the sonic line appears to have finite slope at
6=0.
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Ficure 9. Streamlines in the (z, y)-plane. (@) ¢, =5, M, =0; (b) ¢, =5, M, = 0.220, M, = 1.255,
M, =0.798. Equal increments in y.——~—, sonic line. ¢, = 1, y = 2r.

5.4. The appearance of limiting lines

When ¢, = 5, 10 and 15, solutions with ¢, = constant were found to be terminated
not when M, 1, but by the earlier appearance in the supersonic subdomain of the
(¢, 6)-plane of regions where 4 > 0 (see (3.10)). This is indicated in figure 4. As was
remarked in §3, the occurrence of 4 = 0 in the hodograph plane leads to cuspoidal
streamlines in the physical plane, and the images of (g, #)-plane curves where 4 = 0
are called limiting lines (Kuo & Sears 1954). When 4 > 0, which can occur only in the
supersonic subdomain, the physical plane becomes multiple valued and the fold is
bounded by the limiting lines. The physical significance of the appearance of limiting
lines in hodograph solutions of isentropic compressible flow has been much discussed
in the literature, mainly in relation to external flow about airfoils (e.g. Garabedian
& Korn 1971; Nieuwland & Spee 1973 ; Sobieczky & Seebass 1984) and to internal
nozzle flows. We shall simply take the view that the vanishing of 4 signals the
breakdown of the symmetric isentropic potential flow for our model of the
compressible vortex pair.

We note in passing that a steady recirculating flow about a vortex containing a
compression shock or shocks is not possible since the entropy would not then be a
single-valued function of position but would increase, following a particle with each
passage through the shock.

Regions of the (g, §)-plane where 4 > 0 first appeared for g, =5 at M = 0.231
M, =0.001) (JxI)=(76%x20) and at M_ =0.225 (8M, =0.005) (JxI)=
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Fiaure 10. Contours of stream function ¢ in the (g, f)-plane, —0.75y, < ¥ < ¥,, q, = 10.
(@) M, =0; (b) M, =0.150; (c) M, = 0.1625.————, sonic line g = c*.

(150 x 40), where M _ is the increment in M . With ¢, = 10 we found 4 > 0 first at
M, = 0.1625 (8M , = 0.0025) for both (J xI) = (76 x 20) and (150 x 40) while when
q, = 15,4 > 0 occurred when M = 0.130 (8M , = 0.005), (J x I) = (150 x 40). These
values for (J x I) = (150 x 40) are shown in figure 4, and the last entry in each of
tables 4 and 5 shows the largest M for which no regions of 4 > 0 or of |4| > 1/
(444¢%,,) (indicating the possible presence of branch lines when 4> 00 ; these were
never found) in the (g, #)-plane were detected. In figure 12 we show contours of ¥ and
4 in the (g, 6)-plane which illustrate the onset of 4 > 0 as M is increased at ¢, = 10.
At M, = 0.150 streamlines are smooth in the transonic region. When M = 0.1625
the supersonic flow deceleration near the vortex boundary is rapid. This is
exacerbated for M, = 0.1650 and two regions of 4 > 0 appear, one near § = 30° and
a tiny, just visible second region near & = 70°. The vortex boundary shapes
corresponding to figures 12(ii) and (iii) are shown in figure 13. At the point marked
C in figure 13 (b) the vortex boundary actually crosses itself on a small scale in a
double cuspidal form, as expected.

Although we found no difficulty in obtaining hodograph solutions for M above
the critical value when 4 = 0, no systematic attempt was made to fully search this
region of (M,,q,)-space for the possible reappearance of solutions with 4 <0
everywhere.
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Fioure 11. Streamlines in the (x, y)-plane. (@) ¢, = 10, M =0; (b) ¢, = 10, M , = 0.150,
M, =2014, M, = 0.492. Equal increments in {.————, sonic line. g, = 1, v = 2x.
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FiGURE 12. (a) contours of ¥ in the transonic region of the (¢,0)-plane: (i) M, =0.150; (ii)
M =0.1625; (iii) M, = 0.1650. (b) contours of 4 (equation (3.9)) in the (g, #)-plane. Same g¢,, m,
as for (a). Shaded region, 4 > 0.
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Fiaure 13. Vortex boundary shapes in the physical plane, ¢, =10. ¢, =1, I'=2x. (a) M ©

= 0.1625; (b) M, = 0.1650; small regions corresponding to 4 > 0 in the (g, 8)-plane are labelled C
and D.

We remark that for all calculations reported here, both the eigenvalues and the
determinant of the Jacobian of (4.14) were checked to test for possible bifurcations
but none were detected. As pointed out earlier we were unable to search for possible
bifurcations to solutions with an asymmetric vortex boundary shape owing to the
basic symmetry properties built into the solution method.

5.5. The EV results

Having described our results on the CPV we turn to the EV case. The principal
physical parameters for the evacuated vortex are summarized in table 7, while the
shapes of the half-vortex boundary on which M ,—~ o and p,, p, and T —0, are
shown in figure 14. In table 7 (ab) is a measure of the mean vortex radlus Fnin and
(a*b*)i is a measure of the mean radius of the sonic line 7*. For 1sentroplc
compressible flow about an isolated evacuated vortex #* /7, = [(y+1)/(y— 1D}
There is only one parameter M for the EV and the procedure followed was to
increment M ,, from the minimum practicable value of M, = 0.02 where ¢., = 111.8,
to a value where again regions where 4 > 0 were detected in the (g, #)-plane. With
(/ xI)=(600x 30) and (300 x 40) this occurred at M ~ 0.0900 (8M , = 0.0025);
when (J xI) = (150 x 40) (not tabulated), this happened at M = 0.0925 (M, =
0.0025). In figure 14 the vortex boundary shapes are only slightly elliptical at M , =
0.02. Distortion of the boundary shapes increases with M until when M, = 0.0900
(not shown) the vortex boundary forms, near point C, the self-crossing cuspidal
shape characteristic of the physical-plane fold produced when 4 > 0 in the (g, 8)-
plane. The increasingly large deviation from a circle of the vortex shape when M
increases is caused by the strain field generated by the presence of the companion
vortex. This is analysed in detail in §6 where comparisons between the axis ratios
a/b predicted numerically and by the perturbation theory are discussed.

We found no evidence of possible bifurcations of the solution branch in the
calculated range of M, and no suggestion of a return to physically realizable
solutions in the range 0.09 < M < 0.20.



195

Compressible vortex pair

ug
019
L3
L9T1°9
Lz
SLT'9
ug
161°9
ug
8C%'9
661°9
Lz
€619
1z
6€2'9
ori'e
ug
9819
€609

J

6¥¥'¢
|§24
6¥¥'¢
114 4]
6¥¥'¢
16%°¢
6¥¥v'c
€9%'¢
6¥¥'c
9¥'é
oLve
63¥¢
8L¥'C
6¥¥'¢
b1t 4
¥6%°¢
6¥7'¢
€8%'G
689G

()

m?f_av

016£0°0
G6g00

66 LE0'0
08€0°0

GLGEO'O
Lgg00

621€0°0
11€0°0

€8960°0

889G0'0
99600

9€360°0
13200

68L10°0
8L100
qLI00
7768000
08800°0
8¢800°0

s(qm)

T—=F ‘1 = *b g xipuaddy jo L10ayj
onoydwiee 1apio-Suipes| oy} jo suonoipeid 03 peredwiod UMOYS Xo9104 pajenowas o[qssarduwos oyy 10 seiyaedosd pajeqnore)) -y, T1av],

g0
qg6%°0
S0
95670
g0
€96%°0
g0
89670
g0
€L6Y'0
9L6%°0
g0
8L6%°0
R
¥86%°0
8670
g0
96670
06670

a

¥106°1
97106°T1
70861
G0€6°T

01661
T166°1

E¥C1'G
L¥e1'G

€8LG'E
LLLE'E
68LCC
S09%°¢
€19%°¢
9€89°C
g989°¢
€¥89°¢
99LE°¢
928€'¢
ePLEE

"

¥¢0'¢
8L0'¢
1S0°€
€LO'E
0'e
G90°'¢
£0°€
£€50°¢
020°'¢
020°¢
¥0°'€
L10'¢
880°€
110°¢
Lo0’e
€€0°’¢
€00°¢
800°¢
8€0°¢

%

g60°%
s}
chm.ﬂv

LEG'Y “v
¥6¥'S
18%°¢

-~
000'L
186'9
030’8
ars'L

LG'GG

€€'9¢

L6'Le

9618

8C'LE

192 4 4

16°6¢

8117

bwa

gL8'0

09800

800

L00

90’0

0’0

600

ﬁoﬁﬁ&ﬁbé
0% X 008
ﬁo_ao&s%«ﬂ
0% X 008
ﬁo_uoaﬁrmﬁ«
0% X 00€
Aossm_ié
0% X 008
onoyduhsy
0€ X 009

0% X 008
Aoﬁoamﬁ%ﬁw
0% X 008
noydussy
0€ X 009

0% X 00€

— onoydwudsy
0g X 009

| orxooe

Ixr




196 D. W. Moore and D. 1. Pullin

0.54
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0.50

0.48
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T

T
0 0.02 0.04 0.06
x

Ficure 14. Vortex boundary shapes in the physical plane for the evacuated vortex. From centre:
M =0.02, 0.04, 0.06, 0.07, 0.08, 0.0875, limiting lines detected near point C for M, = 0.090.
go=14=—1.

5.6. Uniqueness

Finally we note that where we obtained numerical solutions with 4 < 0 everywhere,
these were smooth functions of M, suggesting that eigensolutions are not present.
Moreover, had the problem been ill posed, the solution would have been sensitive to
changes in the mesh size and to changes in ¥, and g, ; this would have been likely to
have prevented the Newton iteration from converging. The detailed results presented
in tables 1-8 reveal no such sensitivity to J or I, and we can infer lack of sensitivity
to ¢, and g, from the convergence of the Newton method. Also for ¢, = 10, M, =
0.10-0.160 (M, =0.01) and M = 0.1650-0.1750 (8M , = 0.0025) we have ex-
amined the diagonal elements of the LU decomposition of the banded matrix. In
particular the ratio of the smallest element to the next smallest was always nearly
unity, indicating a non-singular matrix and further strengthening the case against
eigensolutions.

6. Approximate theory for M < 1

Since the incompressible flow corresponding to M = 0 is known exactly, it must
be possible to determine an approximation to the flow for M, < 1 by the methods
of perturbation theory. However, as pointed out by Barsony-Nagy etal. (1987, referred
to as BN hereinafter) the occurrence of supersonic flow near the vortices renders the
perturbation singular and they explain how to overcome this difficulty using
matched asymptotic expansions. We shall apply their method to our problem to
obtain, in particular, an estimate of the shape of the vortex boundaries.

For this calculation, it is convenient to non-dimensionalize differently, reflecting
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the fact that we shall be working in the physical plane. Thus we define a
dimensionless complex coordinate z and velocity potential ¢ by

Dz=a'+iy (6.1)

and %¢ =¢’. (6.2)

6.1. The far field
First we develop the Rayleigh—Janzen expansion

=g+ M2, +..., (6.3)
where ¢o = Re{—iln(z—i)+iln(2+i)—}¢} (6.4)

is the incompressible flow for a vortex pair. Substitution of the expansion (8.3) in the
governing equation for the velocity potential

Vi = 2V -V((V4)?), (6.5)
r
where M(x,y) = Do (6.6)
is a local Mach number, leads to
Vig, = 2V V((V,)?). (6.7)
We insist that ¢,—>0 as|z|>o (6.8)

(and here our procedure differs from BN) and find that the solution of (6.7) satisfying
(6.8) is

¢, = [2(z* +1)(22+ 1)] " Re((72— 2222+ 2%). (6.9)
This result enables us to calculate the velocity at O and we find
ol - 347M2 +OML), (6.10)

which can be used to provide an initial estimate for ¢, for the solution of (2.33) and
(2.34) in the evacuated vortex case.

We note in passing that, according to (6.10), M, =1 when M = 0.281...,
confirming how rapidly compressibility effects become important near the vortex
pair as M is increased.

We can see from (6.9) that ¢, is singular at z = i and that ¢, has a worse
singularity than ¢,. In fact if we introduce local polar coordinates (7,8) defined
by .

z=i+7e", (6.11)
then, as 7 >0 with M fixed,

cosd 3 . A 4
e —Zsln20)+0(Mw). (6.12)

¢ ~ 6—1*sin 29+M§°(

BN remove the 7! term by adding to ¢, a complementary function which cancels
it, but we prefer to remove it by a small change of origin of our local polar coordinate
system. In fact, if we replace (6.11) by

z=1i(1—3iM2%)+re', (6.13)
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we can show that ¢ =0—%r?sin20—-3M2 sin20+.... (6.14)
The second term in (6.14) is the strain field due to the second vortex and it will
emerge that it is responsible for the shape distortion.

6.2. The near field

This approximation is valid only so long as compressibility effects are small, so that
it applies in the range M, < r < 1 and is the inner form of the outer expansion of ¢.
Thus we must seek a complementary inner approximation valid when 0 < 7 € 1 and
insist that the two approximations agree in their common region of validity. It is

convenient to put r=sM, (6.15)
and seek an expansion of the form
p=0+M2,(s,0)+.... (6.16)
Substitution into (6.5) leads to
- 2 - 2

s? Os? s s 08 s 062

an equation due Taylor (1930). BN show that (6.17) can be integrated in terms of
hypergeometric functions, and if

T=2(y—1)s7? (6.18)

the general solution with angular dependence sin 26 is
¢, = T(Aw, (1) + Bw,(1)) sin 26. (6.19)
In (6.19), w,(1) = F(a,b,3,7) (6.20)

is the solution of the hypergeometric equation regular at 7 = 0 and w, is the linearly
independent singular solution whose behaviour as 70 is given by (Abramovitz &
Stegun 1970, p. 564)

Wo(T) = %+'—il+ln7+0(1). (6.21)
In (6.20) and (6.21) @ and b are given by

_ 2y—1+(4y*—3)

2(y—1) ’
_y—l-(y*-3) 6.22
= (6.22)
d = —2 (6.23)
an b= ey @=a)(1=b)a@=b) :
d = 2 (6.24)
o A= =aa—o |

The asymptotic behaviour (6.21) shows that for »/M > 1 the outer form of the
inner expansion is

¢=0+(M§0Bﬁl+%ﬂ) sin26+.... (6.25)
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Comparing (6.14) and (6.25) shows that the two expressions agree if
Bp, = —iy—1); (6.26)
the fact that, with this value of B, 3
Bg, = ~1 (6.27)
is a check of consistency.
6.3. The boundary shape

We next consider how to calculate the shape of the vortex boundary. The
unperturbed shape is a circle 7 = 75. In view of the #-dependence of the O(M%) terms
in ¢, it is reasonable to suppose that the perturbed shape is

T=7g+M?% D,cos20+.... (6.28)

The constants 4 in (6.19) and D, are determined by the two requirements that (6.28)
is a streamline and that |V¢|? is constant on (6.28), both conditions being satisfied to
O(M%) only. We shall suppress the lengthy algebra involved and give only the final
result. Equation (6.28) represents an ellipse with axis a parallel to the flow at co and
axis b parallel to the line joining the vortices. Out result is

2 =101 —r \-My-D
a_ _2Mm,‘r€3 (1—71g) (6.29)
b (Tpw1(Tp) —0,(75))
Before we can use (6.29), we must express 75 in terms of the parameters of the
problem and, to leading order, .
q’v)
Tp=[=). (6.30)
7 (qev

The evacuated vortex is thus 75 = 1, and letting 7, > 1 in (6.29) gives, for y = 1.4,
§-=1+25.6M§°+.... (6.31)

Thus the perturbation theory shows that the vortex cores are ellipses, with their
major axes parallel to the flow and, in view of (6.13), their centres of vorticity shifted
inwards relative to the incompressible far field. Such a shift was shown by BN to
occur generally. In our case it implies that the propagation number P defined by

_4rDq,,

P==7

(6.32)

is given by P=1-iM%+.., (6.33)
so that the effect of compressibility is to reduce the speed of the vortex pair.

6.4. Comparison with numerical results

A comparison between our numerical results for the axis ratio and (6.29) is shown in
table 8, the limiting form (6.31) being used in the evacuated case. The agreement is
good, except for the cases g, = 2.5 and 3.0 where presumably the vortices are too far
from the circular (see figure 7) in the incompressible case for perturbation theory to
be applicable.

The prediction (6.33) that compressibility slows down the vortex pair agrees
poorly with the data, as is clear in table 9. The trend is correctly predicted by (6.33)
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g, =25 q,=3 qg,=5

M, Num. Pert. M Num. Pert. M, Num. Pert.

0 1.87 1.64 0 1.56 1.44 0 1.17 1.16
0.10 1.90 1.66 0.10 1.59 1.47 0.10 1.20 1.18
0.20 2.00 1.73 0.20 1.68 1.54 0.15 1.24 1.22
0.30 2.39 1.87 0.30 1.92 1.69 0.20 1.31 1.28

q,=10 q,=20 Evacuated vortex
M, Num. Pert. M Num. Pert. M_ Num. Pert.
0 1.041 1040 O 1.011 1010 0.02 1.010t 1.010

0.05 1046 1046 0.05 1016 1017 0.04 1.0401 1.041
0.10 1.069 1.069  0.08 1.050 1.052 0.05 1.064 1.064
0.15 1.155 1156 — — — 0.07 1.094t 1.092
— — — — — — 0.08 1.172 1.164
— 0.0875 1.199 1.198

TABLE 8. Axis ratios for vortex core versus M. Compressible Pocklington vortex; values of ¢,
shown, (J xI) = (150 x 40). Evacuated vortex: (J xI) = (300 x40). 1 (JxI)= (600x30).¢, =1,

=—1.

g, =25 g, =30
M, Num. Pert. M, Num. Pert.
0 0 0 0 0 0
0.10 0.005 0.0025 0.10 0.005 0.0025
0.20 0.023 0.01 0.20 0.024 0.01
0.30 0.057 0.0225 0.30 0.056 0.0225
q,=50 q, = 10.0
0 0 0 0 0 0
0.10 0.004 0.0025 0.05 0.0001 0.00063
0.15 0.006 0.0056 0.1 0.0003 0.0025
0.20 0.008 0.01 0.15 —-0.0017 0.0056
g, =20 Evacuated
0 0 0 0.02 0 0
0.05 0.004 0.00063 0.04 0.011 0.0003
0.08 -0.035 0.0016 0.05 0.0048 0.00053
0.06 0.0163 0.0009
0.07 0.0065 0.0011
0.08 0.0149 0.0015

TaBLE 9. Effect of compressibility on propagation number, using finest grid results in each case.
Numerical values are P(0)—P(M ) except for the EV where P(0.02)—P(M),,) is displayed.
Perturbation values obtained from equation (6.33).

when ¢, = 2.5 and 3.0 but the effect is underestimated. With ¢, = 5.0 the agreement
is better, but at larger ¢, the data reveal no clear trend. We suspect that this may
be due to errors in the numerical value of D, which is hard to calculate accurately
because of the singularity at 0. The axis ratio is, of course, unaffected by slight errors
in the y-coordinate of A.
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Finally, we note that eigensolutions in the form of trapped small-amplitude sound
waves of elliptical form would correspond to the vanishing of the denominator of
(6.29). Numerical evaluation reveals that this denominator is negative for all 7; when
y = 1.4, so we have further support for our contention that eigensolutions are not
possible for our problem.

7. Conclusions

We have demonstrated by numerical means that vortex pairs with stagnant cores
can propagate steadily in a compressible fluid. Moreover, the flow with respect to
axes fixed in the pair can be transonic and shock free. However, unlike the case of
a rigid symmetric aerofoil for which transonic shock-free flows are isolated (in the
sense that they do not persist under small changes of profile for fixed conditions at
infinity or small changes in conditions at infinity for a fixed profile (Morawetz 1956,
1957, 1958)) a family of shock-free transonic flows which depend smoothly on the
Mach number at infinity, M., appears to exist for sufficiently small core radii. Of
course, the shape of the cores responds to the change in M, so there is no conflict
with Morawetz’s results.

This numerical work extends to the fully nonlinear regime the work of BN who
showed, using matched asymptotic expansions, that shock-free transonic flows
containing evacuated vortices existed.

Qualitatively, a vortex pair of given dimensions and circulation has its speed of
propagation reduced and the distortion of its boundary increased by compressibility
effects.

For vortices with large cores, limitations of the hodograph method prevented us
from entering the transonic regime. For smaller cores, transonic flow occured, its
extent increasing with M _ until limit lines appeared.

We have not been able to determine the value of M, at which, for a vortex at given
dimensions and circulation, shocks form in the recirculating region. It would be
interesting to study this — necessarily unsteady — flow by solving the time-dependent
Euler equations numerically.

We are grateful to Professor Barsony-Nagy for permission to use his results prior
to their publication.

Appendix A
We define local coordinates in the hodograph plane by

a=g—1, f=0-—mn. (A1)
Introducing this change of variable into (2.12) leads to

?;fﬂl -M? )2%= —(2a+a?) (1—p,(1 +a?) w

%¢+p4(2a+a 2¢ (A2)

—(1+a) (py—ps(1 +a)?) Ey 1
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where p, = }(y—1) M%, p, = 1+p,,py = }(y—3) M3, and p, = §(y+1) M7, Near the
singularity at (0,0) (A 2) takes the form

a2 2
o ‘ﬁ +(1—-M2) ﬂ!{ (A3)
with Y(,0)=0 (x<0) (A4)
¥
and aﬂ a,0)=0 (a>0). (A 5)
We introduce the local polar coordinates (s,d) defined by
1 ig
Then possible solutions of (A 3)—(A 5) are of the form
¥ = s™2 cosimd, (A7)

where m has integral values. We must appeal to the form of the solution in the
physical plane to see that, as described in §2, m = —1.
Thus we write Y = i, + ¥, where

Yo = Astcosls, (A 8)
so that, on identifying the dominant terms on the right-hand side of (A 2),

Fyy 10y, 1%, o*y )
3 Ts0s 0 2P da? (P2 =Ps) da (A9)
Here Dy = 1_p1+1—pl4iﬁo
2 2
and the identity aafo = —(1—-M? )alg;' (A 10)

has been used to eliminate f-derivatives. The complementary function in (A9) is

B st cos1d + O(sh) (A 11)
and the particular integral is, after some algebra,
A s (B, cos3s+ B, cos1s), (A 12)
3(1+i(y—1) M,
where B, =3 8(21(7LM£) ) _y1—m2), (A 13)
1+3(y—1) MY
=2l _— A
B, 16(1—M2) (A 14)
Appendix B

In this Appendix we find a leading-order approximation to the value of the stream
function at the boundary of the evacuated vortex.

Let ; denote the distance of the point (z’, ") from the upper vortex centre (0, D’)
and r; distance from the lower. Then the incompressible stream function is

’ I'V ’
¢’=p°2';n{—lnr;+lnr;——2%}; (B 1)
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note that Y’'(’,0) =0 as in §1. As we have pointed out in §6, this is an outer
expansion, valid when

rre <KD'M . (B2)

When 7; < 1, we can calculate ' for the solution for an isolated hollow vortex.
Thus ,
wi_ _ I, Ty—1))y~

or, 2mnr 5(1 8% ) (B3)

where s denotes stagnation conditions and (2.10) has been used to calculate p’. We
note that the radius R’ of the EV boundary is given by

, _Tly=1p
=—4 7 4
R 24/2mc; (B 4)
so (B 3) holds for r; = R’. It follows that
¥ =L (- )5t Ins+ Fla)~ F()}+ ¥, (B5)
where F(s) = ﬁ f Inw(1 —u) = du, (B 6)
- 0
and where 8= R*/r. (B7)
For r, > R, (B 5) gives
’ PP; ’ ’ 1 ’
y' = (mInr+In R —3F (1)) + . (B8)
Now Pl = pla+OME), (B9)
so that, comparing (B 1) and (B 8) in their common region of validity gives
, _Tpy 2D\ 1

For y = 1.4, F(1) = —1.6804, while for y = 1.667, F(1) = —1.2804.
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